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The general analysis developed in Parts 1 and 2 of three-dimensional duct 
flows subject to a strong transverse magnetic field is used to examine the flow in 
diverging ducts of rectangular cross-section, the walls of which are electrically 
non-conducting. A dramatically different flow is found in this case from that 
studied in Part 2, where the side walls parallel to the magnetic field were highly 
conducting. Now it is found that the core velocity normalized with respect to the 
mean velocity is of O(M-*) while the velocity in the side-wall boundary layers is 
of O(Mh), so that these boundary layers carry most of the flow. The problem 
of entry is solved by analysing the change from fully developed Hartmann flow 
in a rectangular duct to the flow in the diverging duct. It is found that the dis- 
turbance in the upstream duct decays exponentially. The analysis of the side- 
wall boundary layers is more difficult than that in Part 1 on account of the dif- 
ferent boundary conditions and requires the solution of two coupled integro- 
differential equations. Numerical solutions are obtained for a duct whose width 
increases linearly in the flow direction. 

1. Introduction 
I n  Part 1, Hunt & Ludford (1968) developed the general analysis of three- 

dimensional duct flows subject to a transverse magnetic field sufficiently strong 
for inertial effects to be negligible, and applied this analysis to flows past ob- 
stacles in channels of constant area. I n  Part 2, Walker, Ludford & Hunt (1971) 
considered variable-area symmetric rectangular ducts whose side walls (parallel 
to the applied magnetic field) are perfect conductors, the other (top and bottom) 
walls being insulators. They found that the essential problem was to determine the 
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FIGURE 1. Duct with insulating walls. 

structure of thin viscous boundary layers adjacent to the side walls and that the 
completely local character of these side layers made the analysis tractable for all 
three general types of such ducts. The analysis for similar ducts with insulating 
side walls turns out to be much more difficult because the local character of the 
flow is lost. However, the problem cannot be ignored since it is of fundamental 
importance in pumping liquid metals across strong magnetic fields, as in the 
cooling system of a fusion-power reactor (cf. Hunt & Hancox 1971) or the circu- 
lating system of an MHD generator. We first concentrate on ducts with parallel 
side walls and straight, diverging top and bottom walls, and then extend the 
analysis for this prototype to  general fully insulated, variable-area rectangular 
ducts. 

In $ 2  we derive the fundamental boundary-value problem governing the side 
layers in ducts with parallel side walls and diverging (or converging) top and 
bottom walls. When the side walls are insulating quite a different flow pattern 
can be expected, because the transverse currents generated in the core are now 
blocked. In constant-area rectangular ducts (see Hunt & Shercliff 1971) these 
currents simply recirculate in the y,z plane (figure I) through the Hartmann 
layers at top and bottom. However, in a diverging duct the varying core velocity 
leads to a change in the induced electric field along the duct, and this basic 
difference causes the currents to circulate in the x, x plane through the core and 
side-wall layers. Since the latter are thicker and hence of lower resistance than 
the Hartmann layers, larger currents circulate (as in a constant-area duct, whose 
highly conducting top and bottom walls short circuit the Hartmann layers). 
This leads to high velocities in the side layers, which thereby carry nearly the 
entire flow. 

Such jet-like velocity profiles have been found in two experiments under- 
taken at  Riga. In  the first (Branover & Shcherbinin 1966) the duct had a step 
increase in y (parallel to the magnetic field) a t  x = 0. It was found that most of the 
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flow hugged the side walls for x > 0,  as if avoiding the expansion in the centre. 
In the second experiment (Slyusarev, Shilova & Shcherbinin 1970) the duct 
diverged in the y direction at  5". (Note that although the top and bottom walls 
were made of stainless steel they had an insulating coating.) While such small 
divergences require a slightly modified theory, the predicted high velocity side 
layers were observed. 

The opportunity is taken in $ 2  to revise the conditions at a Hartmann layer 
on a general insulating boundary, since the ones given in Part 1 erroneously 
neglected the surface curvature. This error does not affect any of the results 
presented in the MHD literature including the present paper, since all MHD 
analysis has been restricted to first-order approximations which are independent 
of surface curvature. 

In $ 3  we reduce the side-layer problem to a pair of coupled integro-differential 
equations in x and y, where the applied magnetic field is in the y direction and 
the centre line of the duct is taken as the x axis (see figure 1). The presence of 
x derivatives in these equations reflects the loss of the local character of the flows 
treated in Part 2. A single integro-differential equation is derived for the solution 
in the diverging portion of a prototype with top and bottom walls at  y = _+ a for 
x < 0 and at  y = (a  + b z )  for x > 0. The physical situation is quite different in 
the constant-area portion (x < 0)  since the fluid outside the side layers can have 
any irrotational motion in the x, x plane when the top and bottom walls are para]- 
lel (see Part 1). The upstream (x < 0) influence of the divergence is restricted to  
the neighbourhood of the join at  x = 0 and the fully developed solution is re- 
covered sufficiently far away from the join. In  the fully developed solution for 
an insulated rectangular duct there are no high velocity side layers and the non- 
dimensional core velocity is equal to one everywhere. As we approach the join, 
part of the mass flux is drawn into the side-layer regions, so that high velocity 
layers develop before the divergence begins and locally disturb the fully developed 
flow. The integro-differential equation derived in 5 3 is singular in the limit 6 + 0 
and a new equation is derived in $ 4 for the high velocity side layers in the constant- 
area portion. 

In  tj 5 we derive an integral relationship between the upstream and downstream 
side-layer solutions evaluated at  x = 0. The numerical solution presented in $ 6  
invoIves expanding the two sohtions in the eigenfunctions of the two integro- 
differential equations and using the joining integral equation to determine the 
coefficients in these expansions. With the proper scaling in a + bx, the variables 
in the diverging portion are independent of x except in the neighbourhood of the 
join. In  $7  we present typical profiles for the high velocity side layers in this 
quasi-developed solution, which was originally derived in Walker's thesis ( 1970). 
The flow near the join is quit,e complex, but, the severity of the disturbance here 
is reflected in a plot of the fraction of the total mass flux carried by the high velo- 
city side layers in the constant-area portion as a function of the divergence b. 

In  5 8 we discuss the extension of the analysis for this prototype to other fully 
insulated rectangular ducts. 
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2. Formulation of the problem for a general duct 
If the induced magnetic field and the fluid inertia are negligible, the non- 

dimensional equations governing the steady flow of an electrically conducting 
liquid of uniform properties under the action of a transverse magnetic field 
B, = B,3 are Vh=jxQ+M-2V2v, V . v = O ,  

j = V $ + v x P ,  V.j = o 
(see Part 2 ) .  Here h is the resealed pressure p / N ,  j is the electric current density, 
v is the fluid velocity, $ is the electric potential and N = gB:d/pU, and 
M = B,d(cr/q)t are the interaction and Hartmann numbers respectively. The 
induced magnetic field can be neglected when the magnetic Reynolds number 
R, = p U , d  is small and, for the present problem, the inertial effects can be 
neglectedwhen N $ or N $ R3 or .Jf& 9 R, 

where R = iIP/N = pU,d/r is the Reynolds number (see Part 2, p. 682 for limita- 
tions of this approximation). The governing equations are equivalent to 

a 2 $ / a y 2  = M - V 4 $ ,  aqay = V2h, ahlay = M - ~ V ~ V ,  ( l a ,  b,  C )  

u = - a$/az - ahlax + M - ~ V Z U ,  w = a$px - ahla2 + M - ~ v ~ w ,  (1  a, e )  

j ,  = ahpz - A - ~ v ~ W ,  j ,  = a$lay, j ,  = - ahlax + M - ~ V Z ~ ~ ,  ( i f ,  g, h j  

where the first two equations are obtained by substituting the other equations 
int0V.v = 0 . j  = 0. 

The present duct (shown in figure 1) has parallel plane side walls, so that half 
their distance apart will be taken for the characteristic length d. The average 
velocity a t  some section, say x = 0, will be used for the characteristic velocity U,. 
Thus +1 +f(O, j-l j u(0, Y ,  2 )  dY dz = 4f(O). ( 2 )  

-f(O) 

As boundary conditions we have 

v = 0, j ,  = & f ’ ( x ) j ,  a t  y = & f ( x ) ,  (3a) 

and v = O ,  j , = O  a t  z = & 1 .  ( 3 b )  
Together with the governing equations ( 1 )  these form a homogeneous problem 
whose solution is normalized by the condition (2). The Hartmann number is 
the only parameter in this problem and under the assumption that M $ 1 the 
flow region may be divided into a central core and thin boundary layers in the 
fluid adjacent to the duct walls. The various subregions (shown in figure 2) are 
(a )  the core, ( b )  primary Hartmann layers, (c) side layers, (d )  secondary Hartmann 
layers and ( e )  corner regions. 

The core variables, denoted by capital letters, satisfy equations (1) neglecting 
0 ( J F 2 )  terms, so that 

a = y o  +Y, u = - y(an/az) - a q a x  - ayP/az, 

v = y(a2HpX2 + a w p . 2 )  + G, w = y(an/ax) + aY/ax - aH/az, 
J ,  = aH/az, J ,  = Q, J ,  -aH/ax, 
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FIGURE 2. x and z sections showing subregions and notation. 

where !2,’Y, H ,  and G are integration functions of x and z ( H  being the core pres- 
sure). The variables in the primary Hartmann layers are determined locally 
from the tangential velocity and current outside, and match the core variables 
provided that the latter satisfy certain boundary conditions, which physically 
express the conservation of mass and charge within the layer. 

For a general insulator which is nowhere tangential to the applied magnetic 
field, we write the governing equations in an orthogonal curvilinear co-ordinate 
system (n, s, t ) ,  where s and t follow the surface’s lines of curvature and n is the 
distance along the normal. Since the layer thickness is of O(M-l) we stretch the 
n co-ordinate by M and expand the variables as power series in N-l. The solution 
has a local exponential structure 

exp(- IcosalNn) where a ( ~ , t )  = arccos(ii.$j), 

and satisfies the boundary conditions (3a), namely 

v =  0, j, = 0 at M n =  0, 

provided that the core solution (which it matches as M n + w )  satisfies the 
boundary conditions 

a t  n = 0. (5) 
= (h,h,M)-l (a(h,~lsecal)/as+a(h,V,[secal)/at) 

J ,  = (h,h,M)-lsgn (cosa) (a(h,V,)/as-a(h,~)/at) 

Here hEdP + hfdt2 is the square of the line element on the surface. The Hartmann 
conditions (5) differ from the corresponding equations (2.24) and (2.27) of Part 1, 
equations (8) of Part 2, and equation (2.13) of Kulikovskii (1968) which were 
wrong for any situation where a (and hence the layer thickness JP’lsecal) or 
h, or h, varies along a surface. This error does not affect the analysis in either of 
those parts or Kulikovskii’s paper since V,  was only calculated to O(1) and 
h, = h, = 1 for the duct walls considered. 

In our case the s axis is curved (see figure 2) but since we shall again neglect 
O(M-l) terms the Hartmann boundary conditions (5) are simply 

f ‘ U T V = O ,  f’J,TJ,=O a t  y =  *f(x). 
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d2H 

where Y and H are now functions of x alone. 
If J ,  = O( 1) then the continuity of current implies that j ,  and j, are of O(M4) 

inside the side layers since the thickness of these layers is O(M-i) .  Thus (19) 
implies that 4 is of O(M4) and ( 1  d )  implies that u is of O ( M ) .  This implies that the 
side layers carry an O(M8) mass flux which contradicts the condition (2).  There- 
fore in the side layers j,, j, and q5 are of O( I ) ,  u is of O(iMi) and the mass flux is 
of 0(1), while in the core J, is of O(M-4). The O(1) part of H vanishes and the 
only non-zero O(1) core variables are (D = Y(x) and W = dY/dx. Since the O(1) 
part of U is zero, there is no O( 1) mass flux in the core and the entire O( 1) mass 
flux is carried by the side layers. Y represents a transfer of mass flux between the 
side layers and can be shown to be of O(M-l)  by applying the minimum dissipa- 
tion theorem to an arbitrary length of duct (see Walker’s thesis). Thus all O( 1)  
core variables vanish and the O(M-4) core variables are given by expressions 
(6)withY = OandH(x)determined bymatchingtheside-1ayersoIutionsatx = f 1. 

The flow is symmetric in x so each side layer carries half the total mass flux 
4f(O) and we need only consider the layer at x = - 1. The substitution c = Mi 
( x +  1 )  stretches the co-ordinate normal to the side wall giving a semi-infinite 
region with the insulator at  5 = 0. The equations ( 1  a, b, c) governing 4, the O( 1)  
electric potential, w, the O(M8) y velocity and h, the O(J4-i)  resealed pressure, are 

a2+/ay2 = a d $ / a y ,  av/ay = a2h/ap, ahlay = azwlap, (7a ,  b, c) 

while U, the O(M4) x velocity, w, the O(1) z velocity, j,, the O(1) x current, jy, 
the O( 1) y current, and j,, the O(M-4) x current, are given by equations (1 d,  e ,  f ,  

g, h), namely 

u = - a+lac, w = a+/ax - ahlac, j, = ahlac, ( 7 6  e,f) 

(7g, h )  j, = a+/ay, j ,  = - ahlax - a3+/ap. 

The boundary conditions (3  b )  for an insulator become 

a#lag = v = a+px - ahla< = ahlax + a3+/ac3 = 0 a t  b = 0. (8 a, b, C, d )  

f ‘ u T v  = 0,  f ’ j ,T j ,  = au/ac+f’av/ac at  y = if(%) 

or f ’@lac + ZI = a2+/ac2 T + f ’ahlac ~ f ’ a ~ p c  = o a t  y = a f (x), (9) 

The Hartmann conditions (5) also apply in the side layers, where they yield 

and matching the core gives 

v = # = O ,  h = H ( x )  as c+oo. (10) 

Note that, to conserve notation, the dependent variables now denote the lead- 
ing coefficient functions in their own expansions. 
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where 

R = Jr j+lr(X, -1 Y )  (exp ( -  

K = exp ( - ~2 ( 2  + P + Y ) )  (1 - Pexp ( 2 ~ 2  

P- Y I )  - ~ ( p ,  P, y ,  s))  s - Z d y d E ,  
- 

I - Pexp ( - ZF)), 
h 

127 

, (15) 
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We shall consider a duct with 
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for x < 0, 
f(x)={:+bx for x > 0, 

and in Q 8 shall show how the solution for this prototype can be extended to a duct 
with any f (x). I n  the present section we treat the portion with straight, diverging 
top and bottom walls (x > 0), in the next section weshall treat the constant-area 
portion (x < 0), and in Q 5 we shall consider the free shear layer a t  x = 0 in order 
to join the upstream and downstream side-layer solutions. 

The equation (13c) yields an integro-differential equation on r since f '  and 
therefore ~3 are constants. It is integrated with respect to P from 0 to a new P 
because N/ay gives an integral of r times I P- YI-4 sgn( P- Y), which is too 
singular to be treated numerically. Since the integral equation 

a(x)ly-xl+sgn(y-x)dx = o 
a(y )  = 0 for IyI < 1 has a unique solution, 

(Lundgren & Chiang 1967), we can multiply (13d) by IF- YJ$sgn(p-  Y) and 
integrate with respect to Y from - 1 to + 1 to get a second integro-differential 
equation for r .  The equation derived from (1 3 c) is odd in P while the one from 
( 1  3 4  is even, so that they can be added without any loss of information to give 

Sr: 

+1 
b-'(a+hx)/Hg,(P, Y)?(x,  Y)dY =I K2(P, Y)r (x ,  Y)dY 

-1 ax -1 

x ( 2 +  P +  Y + 2 ( 1  -Pexp ( -  2 ~ 2 ) ) - 1 ) c i ~ .  

The integration by parts needed to eliminate the y derivative in ( 1 3 d )  gives 
rise to the last term in (16). This equation will be treated numerically in 3 6.  

4. Disturbed fully developed flow in a constant-area duct 
The flow in an infinitely long constant-area duct is described by the two- 

dimensional fully developed solution of Shercliff (1953). The core variables are 
of O(M-l) except for the O( 1) variables 

U = l ,  @ = -  x ,  
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and the side layers are monotonic boundary layers matching the core and satis- 
fying u = 0 a t  6 = 0. This flow is realized a t  x + - GO in the constant-area portion 
(x < 0) of our prototypic duct, but is disturbed near x = 0 by side layers involving 
O(M4) velocities, which are linked to the similar side layers in the diverging por- 
tion(x > 0). 

Section 4.1 of Part 1 treats the core flow between two plane insulators at right 
angles to the applied magnetic field and the analysis given there is valid whatever 
the shape and nature of the side walls. The fundamental variables are again the 
O(1) electric potential Q, and the O(M-i) resealed pressure H ,  which are now 
harmonic functions of x and z .  The O( 1) core velocities are given by 

and the O(M-9) core currents are given by 

u = -aa/ax, v = 0, w = a q a x  

J, = aH/az, J~ = 0, J ,  = - a ~ / a x .  

The conditions Q , = - z ,  H = O  as x+-m 

arise from matching the fully developed flow, and the other necessary boundary 
conditions arise from matching the side layers at  z = 1 and the free shear layer 
at  x = 0. 

The side layers are quitesimilar to those in the diverging portion, but we cannot 
obtain the governing integro-differential equation by simply setting b = 0 in 
(1 6 ) .  The kernels 2, and 2, involve integrals of (1 -/I exp ( - 2ZZ))-l, which is 
singular at /3 = 1 and E = 0. This singularity reflects a basic difference in the side- 
layer structure for b = 0. Since the flow is symmetric in z ,  we again consider only 
the side layer at  z = - I. The governing equations (7a ,  b,  c) and the side-wall 
conditions (8a ,  b,  c ,  d )  still hold, while the Hartmann conditions (9) become 

v = a2$/aC2 T a$py  = 0 at 2 = rt_ a (17a ,b)  

and matching the core gives 

v = 0, $ = a(%, - l), h = H ( x ,  - I) as c + 00. (18a, b, C )  

The boundary-value problem for $ is now decoupled from that for v and h 
except in the (ignored) wall conditions (Sc,  d ) .  This problem cannot be solved 
using cosine transforms because the solution $ contains singularities at  c = 0, 
y = & a which are not acceptable to the transforms. The basic operator in all of 
our side-layer problems is the product of the forward and backward diffusion 
operators (az/ac2 T slay), so that any variable could be expressed as a super- 
position of heat-source solutions with t = & y. Normally these superposition 
solutions are useless because the boundary conditions at  y = f(x) yield intract- 
able integral equations involving unknown functions of x and 5. However, for 
parallel top and bottom walls, the heat solutions automatically satisfy the de- 
coupled conditions on q5 at y = a. In  terms of P, again the unknown value of 
a3$/ac3 on 5 = 0,  the correct solution is 

9 F L M  56 
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Z(y,  5) = Bcerf (Bcy-4) + n-ty) exp ( - tY2y-1). 

The solution must satisfy fl%vz(r, Y, 0) dy = 0 

in order to be compatible with equation ( 7 b )  and boundary conditions (17a), 
(18b) and (8c). Together with the condition 

4 = @(x, - 1 )  = 1 as x-+-w, 
this condition gives 

@(x, - 1) = 1 - Qa-lnt F(x ,  y*) (2(a - y*)* - (2a)*) dy*. s:, 
We again express v and h in terms of a potential function [cf. equations ( l l ) ] :  

v = - aslag, h = ~ ( x ,  - I )  +s," aepydg. (19a,b) 

Then 6' satisfies (12 b )  and the boundary conditions 

8 = 0  at  y = r t : a  and as <+a, 

aepg = a#lax+ aepy = a q a y  - aqax  = o at g = 0. (20a,  b,  c) 

Here G is the unknown value of a36'/ag3 on 5 = 0 and the wall condition (8d)  has 
been differentiated with respect to y in order to eliminate H ( x ,  - 1) which is 
ultimately determined by introducing the solutions for 4 and 8 into (8d)  and 
(19 b) .  Cosine transforms can be used to determine 6' in terms of G and in particular 
a t [=  Owe find 

where 

The wall conditions (20b, c) have not entered our analysis so far. As in $ 3 they 
now yield a single integro-differential equation 

L = exp ( -  E2) sinh (Z2P) sinh(E2Y)/Szsinh (E2), P = y/a. 

J-+lL,(P, Y ) & ( X ,  Y ) d Y  =J-+lL,(P, -1 Y ) s ( X ,  Y ) d Y  
-1 

s = U # ~ - ~ ( F + G ) ,  X = Z/U. 

In  $5 we shall derive an integral relationship between the solutions of (21) and 
its counterpart (16) in the diverging portion, and in $ 6 we shall solve the three 
coupled equations numerically. 
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5. Joining the flows at the free shear layer 
A free shear layer of O(M-4) thickness spans the duct at  x = 0, separating the 

cores in the diverging and constant-area portions. Following the analysis 
presented in $4.3 of Part 1, which dealt with such shear layers, we find that 

aZ$/ay= - aa+/ap = 0, = - a$/az, v = 0, w = a+/ag 
j, = -a3$/ap, j, = a$/ay, j, = 0, h = H(o+)  = H(o-,z), 

where the stretched co-ordinate is now 6 = M4x and $, u, v, w, j,, jg, j, and h 
denote the coefficient functions of the leading O( I), O(l) ,  O(M4), O(M&),  O(M-4)) 
O( I), O( 1) and O(M-4) terms in their own expansions respectively. Note that the 
assumptions made in Part 1 are satisfied because the O( 1) current is zero in both 
portions of our duct. The solution 4, which satisfies 

az$/aC2 T a$/ay = 0 at y = f a 

and matches the two core solutions as 6 -+ f 00, is once again a superposition of 
heat-source solutions: 

$ = f@( 0-, x )  [erfc ( i&a - y)-g) + erfc(M(a + y)-g)]. 

Thus the shear layer absorbs whatever O( 1) mass flux remains in the constant- 
area core at  x = 0- and carries it in equal parts to the intersection regions at  
z = f I, where it is turned to flow into the side layers in the diverging portion. 

Matching the shear-layer solution yields the boundary conditions 

aH/az = o a@/ax = o at x = o 
on the harmonic functions H and @ in the constant-area core. The first condition 
follows immediately from the O(M-4) shear-layer pressure h, while the second 
requires a look at  the boundary-value problem for the O(M-8) correction 6 to the 
O(1) electric potential $ in the shear layer. Matching the two core solutions 
yields 

C$ = &o-, Z )  as 5 .+ 00, 6 = &o+, X )  +ca@/ax(o+, Z) as c+--co, 

and these conditions will not be compatible with the equations and Hartmann 
conditions for @? (which are the same as the ones for $) unless the constant-area 
core satisfies the secondary boundary condition above. These conditions state 
that the pressure and tangential velocity are continuous across the shear layer. 

At z = - 1 the shear layer intersects the side layer to form a region lying along 
the line x = 0, z = - 1 from y = -a  to y = a and having an O(M-4) x OfM-8) 
cross-section. The details of the flow inside this region do not affect our solution 
elsewhere and will not be presented here. All we need to know is that 2, = O(M4) 
and j, = O( 1) in order to derive an equation relating our two side-layer solutions 
evaluated at x = O*. Since the area of any y section of this region is of O(M-l) ,  the 
vertical mass flux is of O(M-4) and the vertical current flux is of O(M-l).  These 
being too small to redistribute either of the fluxes concerned, the integral of the 

9-2 
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outward normal O(M4) velocity or the outward normal O(1) current density 
around a dosed path in any y section must be zero. In  particular 

where the terms in each equation arise from the constant-area side layer, the shear 
layer and the variable-area side layer respectively. Introducing the expressions 
for the variables concerned in these regions yields the equations 

yqO-3 y, 0) = $(Of, t ,  O ) ,  WO-, y, 0) = h(O+, y, 0) 

joining the two side-layer solutions. We introduce the results of $ 3 and $4 into 
the first equation to obtain an integral relationship between P(O-, y), P(O+, y) 
and G(O+, y), which we integrate with respect to y from 0 to 8. We introduce the 
expressions ( 1  1 b )  and (19b) into the second equation and then differentiate it 
with respect to y in order to eliminate the constant, H ( 0 - ) .  The resulting equa- 
tion, G(0-, y) = bG(O+, y), is multiplied by 18 - y\+ sgn (Q - y) and integrated from 
y = -a  toy = +atoobtainanintegralrelationshipinvolving G(O+,y)andG(O-, y). 
Since these two relationships are odd and even in Q respectively, they can be 
added without loss of information to obtain a single relationship 

where K,  = (l+b)lP- Ylgsgn(P- Y ) + ( l - b ) l p +  Yl%sgn(f+ Y) 

- ( l - P ) ( & R  Y ) - G ( -  p, Y)). 

I n  $6  we shall use this equation to join the solutions of the integro-differential 
equations (16) and (21) at x = 0. 

6. Reduction to eigenvalue problems : numerics 
If we assume solutions of the form 

r = (a+bx)riri(Y), s = exp(hiX)si(Y) 

for the important boundary-layer functions r and s defined in (15) and (21), 
the governing integro-differential equations (16) and (21) are reduced to eigen- 
value problems independent of x. There is an infinite number of distinct eigen- 
values for each equation, but we can exclude positive values of yi and negative 
values of hi because the corresponding functions are unbounded as x + m 
respectively. The actual solution in each portion of the prototypic duct can be 
expanded in the remaining eigenfunctions, the coefficients in the two expansions 
being determined by joining them through (22). Since exact solutions have not 
been found we shall use a numerical scheme which is a close approximation. 

We approximate the semi-infinite 6 integrals in 2, and 2, with a Gauss 
quadrature from 0 to 1 and a Gauss-Hermite one beyond 1. The same scheme is 
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used for the intervals from E, to (1 + E,) and beyond (1 + So) for the integral in L,, 
while the iiitegrand is expanded for small E and the resulting series is integrated 
term by term from 0 to So, truncating after the Ei2 term. If an n-point quadrature 
is used to approximate the integrals with respect to Y in (16), (21) and (22) and 
the continuous variable 9 is only considered at n discrete values, then each equa- 
tion becomes a set of linear equations involving the unknown values of ri and si 
at the discrete Y values, which are the n abscissa for the quadrature. These 
Y values are also used for the discrete values of 9 in order to cover the diagonal 

= Y. Then yi and hi are the eigenvalues and ri and si (n-vectors composed of the 
values of r i  and si at the discrete Y values) the eigenvectors of two n x n matrices. 
The n eigeiivalues for each matrix approximate the n smallest (in absolute value) 
eigenvalues for the corresponding integral equation. 

A 28-point extended Simpson’s rule is used to determine the eigenvalues, 
this quadrature having abscissae at  Y = & 1. The matrix equations are 

yiKl.ri  = K2.ri, hiL,.si = L2.si, 

where the (( 1 - 9)$ + (1 + P)g) terms in (16) and (21) have been incorporated 
into the first and last columns of K, and L,. A standard QR algorithm is used to 
find the eigenvalues of the modified equations 

((K, + K,)-l. K,) . ri = (1 + yi)-l ri, ( Lyl. L,) . si = Ailsi, 

where yi has been shifted by adding K,. ri to both sides of the equation before 
inversion because the first eigenvalue is y, = 0. In  each set of 28 eigenvalues, 14 
are acceptable, but we use only the first 12, since the last two are unreliable. 

is used to determine the 12 
corresponding eigenvectors ri or si in each portion of the duct from 

ri = (1-P)-1(K2-yiKi)-l.V, si = (L2-AiLl)-l.V, 

A 24-point Gauss quadrature with abscissae 

where vj = (l-Yp+(l+Y$ 

The assumed values rl( + 1) +Pri( - 1) = si( + 1) +si( - 1) = 1 normalize the 
eigenvectors. 

Using a 24-point Gauss quadrature to reduce the joining equation (22) to a set 
of approximate equations at discrete values and introducing the expansions 

12 

i= 1 

12 

i = l  

r (x,  Y )  = 2 a d  c i a ~ i ( a + b x ) ~ i r i ( Y ) ,  

s ( X ,  Y )  = 2an-6 Z: di exp ( h i X )  si( Y ) ,  

we obtain 24 linear equations which can be solved for the 12 unknown coefficients 
ci in the expansion for the diverging portion and the 12 unknown coefficients 
di in the expansion for the constant-area portion. This completes the solution 
since the flow variables at  any point in either portion can be written as the sum 
of twelve integrals of the eigenfunctions for that portion. The eigenvalues hi 
and the eigenfunctions si for the constant-area portion are the same for all a and 
b, while the eigenvalues yi and eigenfunctions ri for the diverging portion, as 
well as all the coefficients ci and di, depend only on b. 
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The values of 'y i ,  ci and di for several values of p = (1 - b2) / (  1 -t- b2)  are given in 
table 1, while the values of hi (which are independent of p) are 1.36, 5.34? 9.68, 
14.80, 20.97, 28.58) 38.16, 50.67, 67.89, 93.67, 138.05 and 237-93. 

'The boundary conditions on the harmonic core variables O(x,  z )  and H(x ,  z )  
in the constant-area portion are given by 

while the core variable H ( x )  in the diverging portion is given by 

x (2( 1 ($-'yi)-l -J+lr,( -1 Y )  d Y )  . 

Once the first two expressions have been evaluated, we can easily determine the 
constant-area core functions Q and H ,  using a relaxation scheme for example, 
but these results, along with the expansions for the side-layer variables in both 
portions and the eigenvectors ri and si, are of no great interest. However) in the 
next section we shall consider the division of the mass flux at x = 0- and the 
asymptotic form of the solution as x + co, which has been called the quasi- 
developed flow (Walker 1970). 

7. Mass flux division at x = 0- and quasi-developed flow 
The flow in the prototypic duct consists of two flows which are independent 

of x ,  namely the fully developed flow in the constant-area portion and the quasi- 
developed flow given by r = 2an-*clrl( Y )  in the diverging portion, together with 
transition effects in the neighbourhood of the join a t  x = 0. I n  the diverging 
portion the transition effects just modify the existing high velocity side layers of 
the quasi-developed flow and die out like ~ 1 ' 2 ,  where yz < - 2 for all p. In  the con- 
stant-area portion, the transition effects create high velocity side layers which do 
not exist in the fully developed flow, these layers dying out like exp (1*36z/a). 
Kote how rapidly the disturbance caused by the join dies out in both directions. 

In  the diverging portion the mass flux is confined to the thin side layers by 
strong outward Lorentz forces produced by the O( 1) electrical currents flowing 
in the x direction within the side layers a t  x = 2 1. As x increases the side layers 
spread out, becoming less severe and requiring less current, so that current 
lines are closed across the core through the O(M-*)J, associated with H(x) .  
The current lines must also close somewhere in the negative x direction and 
this is the origin of the high velocity layers in the constant-area portion. The 
circuit cannot be completed in the free shear layer because j ,  is of O(M-B) there, 
and i t  cannot be directly completed through the constant-area core because 
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Fully developed Transition 4 Quasi-developed 

Streamlines 

_---- 
FIGURE 3. y section showing current lines and streamlines. 

- 1.0 - 0.5 0.0 0.5 1.0 

B 
FIGURE 4. Fraction of the total mass flux carried by both side layers at  x = 0-. 

the distribution of current flux in the side layers in the diverging portion 
varies with y while the distribution in the constant-area core is independent 
of y. Thus the currents travel along the side walls in the constant-area portion 
far enough for the side layers to redistribute the current flux in they direction and 
to feed it into the core, where the circuit is closed by a plane potential current 
flow across the duct. In the process the Lorentz forces exerted by the currents in 
the side layers draw fluid into the layers, thereby absorbing part of the mass flux. 
Some possible streamlines and current lines for the plane y = 0 are sketched in 
figure 3. Some physical insight into the transition effects is gained from computing 
the fraction of the total mass flux carried by the two side layers as they enter 
x = 0-, and this fraction is plotted as a function of ,8 in figure 4. Note how the 
severity of the disturbance increases with b. 

The side-layer variables in the quasi-developed solution can be written as 
powers of (a  + bx) times profile functions of p = (1 - b2)/( 1 + b2) ,  Y = y/(a + bx) 
and 2 = c/(a + bx)&, namely 

P& = a(a+bz) -h* ,  v = ab(a+bx) f v* ,  w = ab(a+bx)-2w*, 

j ,  = ab(a+bx)-2jz, j ,  = a(a+bx)-2j;. 
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0 2 4 6 8 10 
z 

U* 
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z 
FIGURE 5 (a-c). For legend see facing page. 
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-1.0 1 

FIGURE 5. Typical side-layer profiles for quasi-developed flow. Profiles in ( a )  
are for various values of p; all other profiles are for p = - 0.6. 

Several typical profiles are presented in figure 5. Figure 5 (a)  shows the variation 
with /3 of the velocity u on the line of symmetry y = 0. The other plots in figure 5 
give the profile functions a t  the levels Y = 0-25 and 0.80 for b = 2 (,8 = - 0.6). 
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8. Extensions 
With the substitutions 

z = - z ,  u = - u  , j ,  = -jz, z = -2, w = -w, j ,  = - jz,  

the present solution becomes the solution for a semi-infinite converging duct 
with straight walls joined to a constant-area duct, that is, a duct with parallel 
side walls a t  z = * 1 for all x and with top and bottom walls a t  y = 2 (a - bx) for 
x < 0 and at  y = a for x > 0. The extension to  ducts with converging or diver- 
ging side walls at  x = t g(x) is almost as easy. For ducts with perfectly conducting 
side walls, Part 2 showed that the flow for parallel side walls is radically different 
from that for diverging side walls. With parallel side walls the 0(1) transverse 
core current passes straight through the side layers without affecting their struc- 
ture. With diverging side walls however these current lines must bend sharply 
inside the side layers in order to enter the conductors a t  right angles. These 
sharp bends create O(M4) velocities in the side layers, which now carry a portion 
of the O( 1) mass flux. For the present duct with insulating side walls, the trans- 
verse core current is blocked by both parallel and diverging walls, and there is 
no fundamental difference between the two solutions. The half-width at x = 0 
is used as the characteristic length so that g(0) = 1 and the mass flux condition 
(2) still holds. For x > 0 both pairs of walls are diverging, the O( 1) core solution 
vanishes and high velocity boundary layers which follow the side walls carry 
the entire mass flux. For the boundary layer a t  z = -g(x) we introduce a set of 
orthogonal curvilinear co-ordinates (2,  y, 2 )  where 2 is measured along the normal 
to the side wall. With the substitutions x = 2 and 5 = M42, our solution for the 
downstream side layers in a duct with parallel side walls becomes the correspond- 
ing solution for diverging side walls. An identical procedure gives the structure 
of the side layers for x < 0, since this structure is independent of bhe upstream 
core solution and is determined by matching the downstream side layers at  
x = 0. The upstream core variables 0 and H are once again harmonic functions 
of x and x which must satisfy the same boundary conditions a t  x = 0 and as 
x -+ - oc;, and must match @(x, 2 g(x)) and H(x, k g(x)), which are determined 
by the upstream side-layer solution. 

The first important extension is to a variable-area duct with straight walls but 
finite length I, placed between two constant-area ducts (y = k a for x < 0, 
y = ~f: (a+ bx) for 0 < x < I, y = (a+bZ) for x > I). We allow realistic contrac- 
tions as well as expansions by admitting negative values of b > - all. We again 
expand the solution for x < 0 in the eigenfunctions corresponding to the first 
m ( = 12 in § 6) positive eigenvalues of (21), and we expand the solution for x > 1 
in the eigenfunctions corresponding to the first m negative eigenvalues of the 
same equation, which in fact have the same absolute values as the positive eigen- 
values. To expand the solution for 0 < x < 1 we use the eigenfunctions of (16) 
corresponding to  the first 2m eigenvalues of either sign. There are a total of 4m 
unknown coefficients in the three expansions which are determined by applying 
the joining (22) a t  both x = 0 and x = 1. The extension to a general variable-area 
duct with top and bottom walls at y = 5 f(x) is now obvious. The variable-area 
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portion is divided into n segments, and the curved walls within each segment are 
approximated by straight walls with slopes bi. The solution in each segment is 
expanded in all 2m eigenfunctions of (16) with /3 = (1 - bl)/( 1 + b l ) ,  and the 
2m(n + 1) unknown coefficients are determined by applying a joining equation 
like (22) at  the entrance and exit of the variable-area portion and at each break 
in slope within this portion. 

For b = 0 we have a constant-area duct for all x and there is fully developed 
flow everywhere. To complete the study of fully insulated variable-area rectangu- 
lar ducts, we must see how such a radically different solution as the present one 
(with its blocked core flow for x > 0) evolves into the fully developed solution as 
b -+ 0. This requires some care since several transitional stages are involved 
between b = O( 1) and b = 0. These will be presented in Part 4, which is to appear 
in this journal. 

Finally, as Hunt & Hancox (1971) have pointed out, very little is known about 
MHD flows in ducts (even of constant area) along which the applied magnetic field 
varies. The problem is of interest in design studies of cooling circuits for fusion 
reactors. Currents again tend to circulate in planes perpendicular to the mag- 
netic field so that, when the walls are non-conducting, similar phenomena may be 
expected. 

This research was supported partly by the U.S. Army Research Office-Durham 
and partly by the National Science Foundation under Grant GP-28483. 
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